lower semicontinuity for parametric set-valued vector equilibrium-like problems
Authors
abstract
a concept of weak $f$-property for a set-valued mapping is introduced, and then under some suitable assumptions, which do not involve any information about the solution set, the lower semicontinuity of the solution mapping to the parametric set-valued vector equilibrium-like problems are derived by using a density result and scalarization method, where the constraint set $k$ and a set-valued mapping $h$ are perturbed by different parameters.
similar resources
Lower semicontinuity for parametric set-valued vector equilibrium-like problems
A concept of weak $f$-property for a set-valued mapping is introduced, and then under some suitable assumptions, which do not involve any information about the solution set, the lower semicontinuity of the solution mapping to the parametric set-valued vector equilibrium-like problems are derived by using a density result and scalarization method, where the constraint set $K$...
full textSolution semicontinuity of parametric generalized vector equilibrium problems
In this paper, the lower semicontinuity and continuity of the solution mapping to a parametric generalized vector equilibrium problem involving set-valued mappings are established by using a new proof method which is different from the ones used in the literature.
full textLower Semicontinuity Concepts, Continuous Selections, and Set Valued Metric Projections
A number of semicontinuity concepts and the relations between them are discussed. Characterizations are given for when the (set-valued) metric projection P M onto a proximinal subspace M of a normed linear space X is approximate lower semicontinuous or 2-lower semicontinuous. A geometric characterization is given of those normed linear spaces X such that the metric projection onto every one-dim...
full textDuality for vector equilibrium problems with constraints
In the paper, we study duality for vector equilibrium problems using a concept of generalized convexity in dealing with the quasi-relative interior. Then, their applications to optimality conditions for quasi-relative efficient solutions are obtained. Our results are extensions of several existing ones in the literature when the ordering cones in both the objective space and the constr...
full textBoundedness and Nonemptiness of Solution Sets for Set-Valued Vector Equilibrium Problems with an Application
This paper is devoted to the characterizations of the boundedness and nonemptiness of solution sets for set-valued vector equilibrium problems in reflexive Banach spaces, when both themapping and the constraint set are perturbed by different parameters. By using the properties of recession cones, several equivalent characterizations are given for the set-valued vector equilibrium problems to ha...
full textMy Resources
Save resource for easier access later
Journal title:
bulletin of the iranian mathematical societyPublisher: iranian mathematical society (ims)
ISSN 1017-060X
volume 40
issue 5 2014
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023